Who are the Indian Middle Class? An EM Approach Using Durables Ownership\(^1,\) \(^2\)

Sudeshna Maitra

Department of Economics,
York University
1038 Vari Hall
4700 Keele Street
Toronto, ON M3J 1P3
Email: smaitra@econ.yorku.ca
Phone: 416-736-2100 Ext. 77052
Fax: 416-736-5987

July 2007

---

\(^1\) I sincerely thank Barry Smith, whose insights have greatly benefited this research.
\(^2\) The research was undertaken while I was Research Fellow at The Conference Board, New York, and I am grateful to Bart van Ark, Ataman Ozyildirim and June Shelp for comments and support.
Who are the Indian Middle Class? An EM Approach Based on Durables Ownership

Sudeshna Maitra
York University
July, 2007

ABSTRACT

The size and consumption habits of the Indian middle class have evoked considerable interest in the media in the past two decades. Yet the definition of the middle class has been nebulous at best. I propose the use of an Expectations Maximization (EM) algorithm to identify and estimate the size of the lower, middle and upper classes in urban India, based on their distinct durables ownership patterns. Estimates using NSS data (55th Round, 1999-00) suggest that the urban middle class in India constitutes approximately 62% of urban households (which implies about 17% of all households) with mean ownership of 3 durable goods (out of 12). I also estimate the probability that each household in the sample belongs to a particular class and based on this information, back out some class-specific socioeconomic characteristics. The estimates suggest a larger urban middle class and lower class-defining income cutoffs than found (or used) in previous studies.

Keywords: middle class, durables ownership, EM algorithm
JEL classifications: O15, I30, O10, O18

PRELIMINARY DRAFT, PLEASE DO NOT QUOTE!
1. Introduction

India’s growth achievements since the 1990s have put the living standards of Indians under global scrutiny. While the economic literature has primarily focussed on poverty and inequality (see Deaton and Kozel (2005) for a review), the fortunes of the ‘new Indian middle class’ have received substantial attention in the media and in business journals, as their earning potential and spending habits have important implications for the global economy. Yet there have been surprisingly few attempts to define and identify the middle class in a rigorous manner. This paper seeks to address this gap in the literature by proposing a method to do so.

Who are the Indian middle class? A broad definition – reflected in most references to the middle class – places these households ‘between’ the poor and the extremely rich. This potentially encompasses a very large and varied group of individuals, but the Indian middle class has been typically perceived to be an educated section of urban society employed in or seeking white collar jobs (Bardhan (1984), Sridharan (2004)).

The size and characteristics of the Indian middle class deserve attention for several reasons. India possesses a sixth of the world’s population, and hence its middle class constitutes a significant portion of the global workforce as well as
a substantial market for final products. Second, the Indian middle class seems ideally placed to partake of the direct trickle-down benefits of high growth and to respond to economic incentives in a way that would make the growth sustainable (Sridharan (2004)). Finally, the growth and consumption habits of the middle class serve as a useful metric of how living standards in India are changing. Hence, it seems essential to develop a rigorous method for defining and identifying the Indian middle class.

Prior studies that have attempted to analyze the middle class in India (Sridharan (2004), NCAER (2005), Ablett et al (2007), IBEF (2005)) have first imposed income cutoffs for the different classes, and then proceeded to outline the characteristics (including consumption of durables) of the groups thus formed. Such an approach involves the use of several implicit assumptions – about who the different classes are and what their income levels must be – to which the results are extremely sensitive.

In this paper, I propose the use of an Expectations Maximization (EM) algorithm (McLachlan and Krishnan (1996), Dempster et al (1977), Hastie et al (2001)) to determine who constitutes the middle class. The appeal of the EM algorithm lies in the fact that there are no external assumptions about who constitutes the classes, apart from the fact that the classes are *different*. Since studies
on the middle class seem to broadly agree that income or consumption is the most important basis for distinguishing between the classes, I define the classes by an aspect of their consumption behaviour, viz. ownership of durable goods. The EM procedure then allows an estimation of the size and characteristics of the component classes in the population by identifying their distinct ownership patterns of durables. The unique solution generated by this approach provides a more robust identification of the classes than has been obtained thus far.

The data comes from the 55th Round of the Indian NSS (1999-00). Durable ownership has featured prominently in discussions of living standards and the middle class (NCAER (2005), Ablett et al (2007), IBEF (2005)) in India. Hence I use data on durable ownership to define and identify the classes. I focus on the total of 12 durable items – 5 recreational goods (e.g. tape players), 4 household goods (e.g. refrigerators) and 3 transport goods (e.g. cars) – that a household may own at the time of interview. Since we are primarily interested in the middle class, which is largely perceived to be an urban phenomenon, I focus on the urban sub-sample of the NSS. However, the analysis may easily be extended to include the rural sub-sample as well.

I find lower, middle and upper class households to constitute 20%, 62% and 18% of urban households, respectively. This implies an urban middle class of ap-
proximately 17% of the entire population, given that 28% of all Indian households were urban (2001 census, Indiastat). The mean number of goods owned by households in these classes are, respectively, 0.3, 3 and 6.3. Small standard errors of estimates support the existence of three classes with distinct ownership patterns of durables.

How does the EM algorithm work? The EM algorithm is an iterative procedure based on maximum likelihood estimation. I provide a preview of the method in the next few paragraphs; Section 2 provides a detailed description of the model and methodology.

I postulate the existence of three classes – lower, middle and upper – in a Three-Component Mixture Model framework, and focus on the total number of durable goods that a household owns at the time of interview. The objective is to estimate the population shares and durable-ownership density functions of the three component classes such that the likelihood of picking the sample is maximized.

The EM algorithm consists of 2 steps – the $E$ step and the $M$ step – which are iterated till convergence is obtained. Suppose that each household in the sample belongs to one of the three classes, represented by the dummy variables $(\delta_1, \delta_2)$ ($\delta_{ij} = 1$ if household $j$ belongs to class $i$, 0 otherwise). Since class memberships
are unknown, I estimate, for each household, the expected value of membership to each class conditional on the observed data on durable ownership. The conditional expectation is simply the probability that the household belongs to each class (since class membership can take values 0 or 1). This is the $E$ (‘Expectations’) step of the algorithm. To perform this step, I begin with initial guesses for the parameters of the class-specific densities. The conditional expectation of class membership is then substituted for the latent class membership in the likelihood function which is maximized to obtain estimates of class shares in the population and the density parameters. This is the $M$ (‘Maximization’) step of the EM. The $E$ step is repeated with the values obtained in the $M$ step and the iteration continues till convergence is obtained.

How do the EM estimates compare with existing estimates of the Indian middle class? The EM estimates imply larger middle and upper classes than are found by Sridharan (2004), Ablett et al (2007) and the NCAER and IBEF studies. Sridharan’s (2004) estimate of the middle class is between 13% and 47% of urban households in 1998-99, depending on the breadth of his definition of middle class. Although these figures are considerably less than the EM estimate of 62% (of urban households), the numbers are hard to compare for two reasons. First, Sridharan has followed the NCAER approach and defined the classes by arbitr-
ily setting income cutoffs. Second, each of his definitions of middle class includes the ‘High’ income category\(^1\) and excludes the ‘Lower-Middle’ income category. Including the ‘Lower-Middle’ group and excluding the ‘High’ group in the definition of middle class, yields an urban-share estimate of 68.5\% (using Sridharan’s estimates), which is much closer to 62\%. This exercise demonstrates the ambiguity that has traditionally dominated the identification of the middle class, and recommends the EM approach for its intuitive resolution of the issue.

Das (2001) makes a reference to the urban middle class as constituting 20\% of the Indian population. While it is not clear how this figure has been arrived at, it is nevertheless close to the EM estimate of 17\% (of total households).

The rest of the paper is organized as follows. The model is described in detail in Section 2. Section 3 presents results and Section 4 concludes the paper.

## 2. Methodology

### 2.1. Data

The data used in the analysis comes from the urban sub-sample of the 55th Round of the Indian NSS (1999-00). The 48,924 households in the sample are asked a

\(^1\)This is the highest income category in the analysis (Sridharan (2004)).
battery of questions about their consumption habits and expenditures. For a list of 22 durable items, they are asked to report how many pieces of each good are in use at the time of the interview. I focus on 12 of these durable goods. These comprise 5 recreational goods (record player/gramophone, radio, television, VCR/VCP, tape/CD player), 4 household goods (electric fan, air conditioner, washing machine, refrigerator) and 3 transport goods (bicycle, motor bike/ scooter, motor car/ jeep). For each of the 12 durables, I define ‘ownership’ as an indicator that a household owns at least one piece of the durable at the time of interview.

The variable of interest is the total number of durable goods (of the 12) – say, $Y$ – that a household ‘owns’ (by the definition above) at the time of interview. Figure A presents the distribution of $Y$ in the sample. Table A presents summary statistics for the ownership variables.

The bimodal distribution of $Y$ in Figure A is strongly suggestive of a mixture model, i.e. one in which the observed density of $Y$ is a combination of densities of individual groups in the population. The goal is, therefore, to identify three distinct groups in the population such that their individual ownership densities or consumption patterns can, in combination, explain a distribution like that in

---

2 The 10 items that have been left out are household furniture/ furnishings, sewing machine, stove and pressure cooker/ pan. These are omitted on account of being necessary items that may not be indicative of affluence.
This is the idea that will be exploited in the Three-Component Mixture Model, estimated by an EM algorithm. The following subsections describe the model in detail.

2.2. The Three-Component Mixture Model

Consider 12 durable goods and let $Y$ represent the total number of these goods that a household owns at the time of interview, $Y \in \{0, 1, 2 \ldots 12\}$. Households can belong to one of three classes – 1, 2 or 3 – which are defined by the pattern of durable ownership of members. Assume that a household owns each good with a fixed probability $(p_i)$, which depends on the class $(i = 1, 2$ or $3)$ to which it belongs. Assume also that each good is obtained independently. Hence the total number of goods owned by a class-$i$ household follows a binomial distribution with parameters 12 and $p_i$.

The probability of obtaining an observation $y$ in the sample is given by:

$$P(y; \pi_1, \pi_2, p_1, p_2, p_3) = \pi_1 \phi_1(y; p_1) + \pi_2 \phi_2(y; p_2) + (1 - \pi_1 - \pi_2) \phi_3(y; p_3)$$  \hspace{1cm} (1)

\footnote{The results of fitting two – instead of three – classes to the data are presented in Table B. A better fit is obtained with three classes (see Section 3).}

\footnote{Allowing dependence in the ownership of different goods would necessitate several additional assumptions on the nature of dependence. Derivation of the density functions $\phi_i$ in these cases becomes very complex.}
where $\pi_i$ represents the proportion of class $i$ households in the population and $\phi_i(y; p_i)$ represents the (binomial) probability that the observation $y$ comes from a class-$i$ household. This is a Three-Component Mixture Model.

The likelihood function of the model described above can be written as

$$L(y; \pi; p) = \prod_{j=1}^{N} [\pi_1 \phi_1(y_j; p_1) + \pi_2 \phi_2(y_j; p_2) + (1 - \pi_1 - \pi_2) \phi_3(y_j; p_3)]$$

where subscript $j$ denotes the household, $j = 1, 2, \ldots, N$. The log likelihood function is then:

$$\log L(y; \pi; p) = \sum_{j=1}^{N} \log [\pi_1 \phi_1(y_j; p_1) + \pi_2 \phi_2(y_j; p_2) + (1 - \pi_1 - \pi_2) \phi_3(y_j; p_3)]$$ (2)

It is hard to obtain the analytical maximands of (2). The EM algorithm is a tool used to simplify difficult maximum likelihood problems such as the above (McLachlan and Krishnan (1996), Dempster et al (1977), Hastie et al (2001)) and is described in Section 2.3.
2.3. The Expectations Maximization (EM) Algorithm

Suppose that each household belongs to a particular class and let the dummy
variables \((\delta_1, \delta_2)\) represent the class membership of households, i.e.

\[
\delta_{1j} = \begin{cases} 
1 & \text{if household } j \text{ belongs to class 1} \\
0, & \text{otherwise}
\end{cases}
\]

\[
\delta_{2j} = \begin{cases} 
1 & \text{if household } j \text{ belongs to class 2} \\
0, & \text{otherwise}
\end{cases}
\]

Then the likelihood and log-likelihood functions may be written as

\[
L_{EM}(y; \pi; p) = \prod_{j=1}^{N} \{\pi_1 \phi_1(y_j; p_1)\}^{\delta_{1j}} \{\pi_2 \phi_2(y_j; p_2)\}^{\delta_{2j}} \{(1-\pi_1-\pi_2) \phi_3(y_j; p_3)\}^{(1-\delta_{1j}-\delta_{2j})}
\]

\[
\log L_{EM}(y; \pi; p) = \sum_{j=1}^{N} \left[ \delta_{1j} \log \{\pi_1 \phi_1(y_j; p_1)\} + \delta_{2j} \log \{\pi_2 \phi_2(y_j; p_2)\} \right] + (1 - \delta_{1j} - \delta_{2j}) \log \{(1 - \pi_1 - \pi_2) \phi_3(y_j; p_3)\} \] (3)

It would be easy to find analytical maximands of \(\log L_{EM}\) (in (3)), if class
memberships \((\delta_1, \delta_2)\) were known. Since class memberships are unknown, the
EM algorithm computes the expected values of $(\delta_1, \delta_2)$ conditional on the data, plugs these into (3) and computes the maximands. The procedure is iterated till convergence is obtained. The steps involved are outlined below (McLachlan and Krishnan (1996), Dempster et al (1977), Hastie et al (2001)).

**The EM Algorithm for a Three-Component Mixture Model**

1. Start with initial guesses for the parameters, $(\pi_1^{(0)}, \pi_2^{(0)}, p_1^{(0)}, p_2^{(0)}, p_3^{(0)})$.

2. Expectation (E) step: at the $k^{th}$ step, compute, as follows, the expected values $(\tilde{\gamma}_i^{(k)})$ of class membership, conditional on the data $(y_1, y_2, ..., y_N)$. Since class memberships are binary, $\tilde{\gamma}_i^{(k)}$ is also the estimated probability that a household belongs to class $i$, conditional on the data.

\[
\tilde{\gamma}_i^{(k)} = E(\delta_{ij}/(y_1, y_2, ..., y_N; \pi_1^{(k-1)}, \pi_2^{(k-1)}, p_1^{(k-1)}, p_2^{(k-1)}, p_3^{(k-1)})
\]
\[
= \frac{\pi_i^{(k-1)} \phi_i(y_j; p_i^{(k-1)})}{\pi_1^{(k-1)} \phi_1(y_j; p_1^{(k-1)}) + \pi_2^{(k-1)} \phi_2(y_j; p_2^{(k-1)}) + (1 - \pi_1^{(k-1)} - \pi_2^{(k-1)}) \phi_3(y_j; p_3^{(k-1)})}
\]
\[i = 1, 2, 3.\]

3. Maximization (M) step: at the $k^{th}$ step, compute the parameters as follows. These are the maximands of the EM-log-likelihood function in (3), when
are replaced by their expected values conditional on the data.

\[
\hat{\pi}_i^{(k)} = \frac{1}{N} \sum_{j=1}^{N} \gamma_{ij}^{(k)}
\]

\[
\hat{\beta}_i^{(k)} = \frac{1}{12} \left[ \sum_{j=1}^{N} \gamma_{ij}^{(k)} y_j \right]
\]

\[i = 1, 2, 3.\]

4. Iterate steps 2 and 3 (the E and M steps) till convergence is obtained.

As output, the EM algorithm yields the following estimates:

1. \(\hat{\pi}_i\) : estimates of the proportion of class-\(i\) households in the population;
   \[i = 1, 2, 3\]

2. \(\hat{\beta}_i\) : estimates of the probability with which a class-\(i\) household owns a durable good, \(i = 1, 2, 3\)

3. \(\hat{\gamma}_{ij}\) : the probability with each each household \(j\) belongs to class \(i\), \(i = 1, 2, 3; \ j = 1, 2, ..., N\)

The ownership probabilities \(\hat{\beta}_i\) and the corresponding class-specific densities \(\phi_i(y; \hat{\beta}_i)\) answer our motivating question – who are the Indian middle class? – by
identifying the distinct ownership patterns of the different classes. Moreover, the estimates of class shares $\hat{\pi}_i$ tells us the size of the urban middle class in India. Finally, the estimated probabilities of class membership, $\hat{\gamma}_{ij}$, along with $\hat{\pi}_i$ and $\hat{\rho}_i$, enable an assignment of each household into a particular class. This allows a descriptive analysis of other class-specific household characteristics such as average per capita monthly expenditure, education of the household head, household type by employment and so on.

The next section presents the results.

3. Results

3.1. EM Estimates

The estimates produced by the EM algorithm are presented in Table 1 and Figures 1 to 3.

The numbers in column (2) of Table 1 represent the population share of each class, $\hat{\pi}_i$. The middle class is estimated to constitute 62% of urban households. This is roughly equivalent to 17% of the total population, since urban households accounted for about 28% of all Indian households in 2001 (2001 census, Indias-tat). The lower and upper classes are found to constitute 20% and 18% of urban
households, respectively. Standard errors are small, supporting the existence of three classes in the population.

Column (3) reports estimates of the probability parameter $\hat{p}_i$ for each class $i = L, M, U$. Lower class households are found to own a good with 3% probability while middle and upper class households own a good with probabilities of 25% and 52% respectively. Small standard errors support three distinct patterns of durable consumption behaviour\footnote{The estimates (standard errors) of the differences are as follows: $\hat{p}_L - \hat{p}_U = -0.5 (0.004), \hat{p}_L - \hat{p}_M = -0.23 (0.002)$ and $\hat{p}_U - \hat{p}_M = 0.27 (0.003)$ ($L \approx Lower; M \approx Middle; U \approx Upper$).}.

An alternative interpretation of the numbers in Column (3) is that 52%, 25% and 3% of households in the upper, middle and lower classes, respectively, own a representative durable good. This interpretation allows an extrapolation of the size of the urban market for a representative durable good, as it specifies what proportion of the three classes will consume the good when it is introduced.

The mean number of durable goods (out of 12) owned by class-$i$ households is simply $12p_i$ (the mean of the binomial distribution for class $i$). These estimates are reported in Column (4) of Table 1. The lower, middle and upper classes are found to own, on average, 0.3, 3 and 6.3 goods, respectively.

Figure 1 plots the binomial density functions $\phi_i$ at the estimated parameters
\( \hat{\pi}_i \) \((i = 1, 2, 3)\). Classes 1, 2 and 3 are the lower, upper and middle classes, respectively. The density of the lower class peaks at 0 durables, whereas that of the middle and upper classes peak at 3 and 6 durable goods, respectively.

Figure 2 plots the actual relative frequency of observations \((Y)\) in the data along with the predicted values. The figure demonstrates a very good fit to the data\(^6\).

Figure 3 plots the probabilities \( \hat{\gamma}_i \) that a household belongs to different classes \(i\) \((= 1, 2, 3)\). For example, households with low values of \(Y\) are most likely to belong to the lower class (class 1) whereas those with the highest values of \(Y\) are certain to belong to the upper class (class 2).

### 3.2. Class Characteristics: A Descriptive Analysis

Using the EM estimates of \( \hat{\pi}_i \) and \( \phi_i(y; \hat{\pi}_i) \) it is possible to compute the number of observations of each value of \(Y\) that belongs to each class. Based on this computation, I randomly assign households to classes. As an example, suppose that there are 100 observations for \(Y = 0\) and that the EM estimates predict that 60\% of these belong to class 1, 10\% to class 2 and 30\% to class 3. I then randomly

\[\text{As an analytical exercise, a Two-Component (two classes) Mixture Model was fitted to the data by EM. The results are presented in Table B. The fit is clearly better in the Three-Component Model.}\]
assign 60 of the 100 households with \( Y = 0 \) to class 1, 10 to class 2 and 30 to class 3. Likewise for each other value of \( Y \).

Assigning a class to each households allows a descriptive analysis of the average characteristics of each class. I focus on the durables ownership patterns for specific goods as well as a host of socioeconomic characteristics. The results are presented in Tables 2-3 and Figures 4-11 and discussed below.

Tables 2(a) – (b) and Figures 4(a) – (b) demonstrate the durables consumption patterns of households belonging to the three classes (assigned by the procedure described above). Recreational and household goods appear to be more commonly owned by all classes than are transport goods\(^7\). Of these, electric fans and televisions are most popular among the top two classes, whereas fans and bicycles are most popular among the lower class.

Table 3 reports the per capita monthly expenditures of households in each assigned class. These numbers suggest lower income cutoffs for the different classes than has been used in prior studies. As an illustration, consider a back-of-the-envelope calculation. At a household savings rate of 28\% (Ablett et al (2007)) and the mean class-specific household sizes in the sample (see Table 3), median annual

\(^7\)This could be partly attributable to the fact that, among the 12 goods considered, there are more recreational and household goods (5 and 4, respectively) than there are transport goods (3).
household incomes are Rs. 41354.16, 58420 and 104465 for the lower, middle and upper classes respectively. The NCAER study places the ‘middle class’ in the annual-household-income range of Rs. 200,000 – 1,000,000 in 2001-02. The class immediately below the middle class – viz. ‘aspirers’ – are also placed in an income range that appears too high, viz. Rs.90,000 – 200,000, annually.

Figure 5 plots the education levels of the household head, by class. The lower class has the highest component of illiterate heads (32%) whereas the upper class has the highest component of heads with a graduate degree (38%). Middle class household heads are most likely to have secondary education (18%) although graduates comprise a comparable component as well (15%). A large proportion (18%) of middle class heads appear to be illiterate. Despite the mean proportion of literate middle-class-household members being 77% (see Table 3), this finding is somewhat surprising given the perception of the middle class as white-collar workers. However, the phenomenon would be consistent with an environment of social mobility characterized by a large influx of lower class members into the middle class. Repeating the EM analysis for other rounds of the NSS could provide further insight into this phenomenon.

The NCAER study divides households into 4 classes: Deprived, Aspirers, Middle Class and Rich.
Figure 6 presents a plot of household type by employment. Being urban residents, the proportion of households who are self-employed in agriculture is negligible. The largest component of households in each class are wage/salary earners. This fact is also mirrored in Figure 7 which plots sources of household income. Over 50% of households in each class have reported income in the past year from wages and salaries. Income from non-agricultural enterprises is reported by more than 30% of households in each class. A large proportion of households also report owning land. Income from interests and dividends is the third most highly reported source of income by the top two classes – 15% and 7% of upper and middle class households, respectively. For the lower class, income from ‘other’ sources is reported by considerably more households (12%) than is income from interests and dividends (2%).

Figures 8 and 9 present a summary of the primary sources of energy used in cooking and lighting. LPG is most commonly used for cooking among the top two classes; firewood and chips are most common among lower class households. For lighting, electricity is most common in all classes, although 25% of lower class households use kerosene as the primary source of energy.

Finally, Figures 10 and 11 provide a summary of class composition by religion and social class. Hinduism is the religion of the majority in India, so it is not
a surprise that Hindus constitute the largest component of all classes. However, Muslims and Christians form a larger component of the lower class (18% and 11% respectively) than the middle and upper classes (15% and 4% of the middle class while 10% and 4% of the upper class are Muslim and Christian, respectively). Likewise, Scheduled Castes and Tribes form a larger component of the lower than the middle and upper classes.

4. Summary and Conclusion

I propose the use of an EM algorithm as a robust method for identifying and estimating the size of the urban middle class in India, when classes are defined by their distinct patterns of durable ownership. Using a Three-Component Mixture Model and data on the total number of durables owned by households (NSS, 55th Round, 1999-00), I obtain estimates of the urban-population shares of the three classes (lower, middle and upper) as well as the probability that a household belonging to each class will own a durable good. The estimates are precisely estimated with small standard errors, supporting the existence of three distinct durables ownership patterns – hence, three distinct classes – in the Indian urban population in 1999-2000.

The magnitudes of the share estimates indicate a larger urban middle
and upper class (62% and 18%, respectively) than were found in previous studies (Sridharan (2004), NCAER (2005), Ablett et al (2007), IBEF (2005)). However, these previous studies have relied on several assumptions about who constitutes the classes, to which their results appear to be sensitive. The EM approach used here is free from such arbitrary assumptions and allows ‘the data to decide’ who constitutes the three classes based on their distinct durable ownership patterns. The solution obtained is unique. This recommends the usage of an EM algorithm to identify the classes and investigate the characteristics of component households.
References


Table A: Summary Statistics, Urban Sub-sample, NSS 1999-00, N = 48,924 households

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min.</th>
<th>Max.</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of goods 'owned' (Y)</td>
<td>3.06</td>
<td>2.33</td>
<td>0</td>
<td>12</td>
<td>Variable Used in EM Estimation</td>
</tr>
<tr>
<td>If household 'owns':</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>'1' if household owns at least one piece of the item</td>
</tr>
<tr>
<td>Record Player/ Gramophone</td>
<td>0.02</td>
<td>0.13</td>
<td>0</td>
<td>1</td>
<td>Recreational Goods</td>
</tr>
<tr>
<td>Radio</td>
<td>0.36</td>
<td>0.48</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Television</td>
<td>0.60</td>
<td>0.49</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>VCR/ VCP</td>
<td>0.05</td>
<td>0.21</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Tape/ CD Player</td>
<td>0.30</td>
<td>0.46</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Electric Fan</td>
<td>0.67</td>
<td>0.47</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Air Conditioner</td>
<td>0.12</td>
<td>0.32</td>
<td>0</td>
<td>1</td>
<td>Household Goods</td>
</tr>
<tr>
<td>Washing Machine</td>
<td>0.10</td>
<td>0.30</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Refrigerator</td>
<td>0.25</td>
<td>0.43</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bicycle</td>
<td>0.37</td>
<td>0.48</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Motor bike/ Scooter</td>
<td>0.20</td>
<td>0.40</td>
<td>0</td>
<td>1</td>
<td>Transport Goods</td>
</tr>
<tr>
<td>Motor car/ Jeep</td>
<td>0.03</td>
<td>0.17</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>'Owns' at least one durable good</td>
<td>0.83</td>
<td>0.37</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>'Owns' at least one recreational good</td>
<td>0.72</td>
<td>0.45</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>'Owns' at least one household good</td>
<td>0.69</td>
<td>0.46</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>'Owns' at least one transport good</td>
<td>0.50</td>
<td>0.50</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total number of recreational goods 'owned'</td>
<td>1.32</td>
<td>1.08</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Total number of household goods 'owned'</td>
<td>1.13</td>
<td>1.08</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Total number of transport goods 'owned'</td>
<td>0.60</td>
<td>0.68</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Per Capita Monthly Household Expenditure</td>
<td>1018.73</td>
<td>1535.32</td>
<td>17</td>
<td>205987</td>
<td>48,921 obs.</td>
</tr>
</tbody>
</table>

Fig. A: Distribution of Y
Table 1: Lower, Middle and Upper Classes in the Urban Sub-sample, Indian NSS, 55th Round (1999-00), N = 48,924 households

<table>
<thead>
<tr>
<th>(1) Category (Class)</th>
<th>(2) Share of Urban Population</th>
<th>(3) Probability of Owning a Good</th>
<th>(4) Mean No. of Goods (of 12)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower (L)</td>
<td>0.2034 (0.005)</td>
<td>0.0257 (0.002)</td>
<td>0.3084 (0.007)</td>
</tr>
<tr>
<td>Middle (M)</td>
<td>0.6161 (0.005)</td>
<td>0.251 (0.003)</td>
<td>3.012 (0.01)</td>
</tr>
<tr>
<td>Upper (U)</td>
<td>0.1804 (0.006)</td>
<td>0.5249 (0.004)</td>
<td>6.2988 (0.014)</td>
</tr>
</tbody>
</table>

* The 12 goods include 5 recreational goods (record player, radio, tv, vcr/vcp, tape/cd player), 4 household goods (electric fan, a/c, washer, fridge) and 3 trasnport goods (bicycle, motor bike/scooter, motor car/jeep)
## Table 2(a): Ownership by Durable Categories by Class in the Urban Sub-sample, NSS 1999-00, N = 48,924 households

<table>
<thead>
<tr>
<th>Category (Class)</th>
<th>Mean No. of Goods Owned by Households</th>
<th>Proportion of Households Owning At Least one Good in the Relevant Category, by Class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All (12 items)</td>
<td>Recreation Goods (5 items)</td>
</tr>
<tr>
<td>Lower (L)</td>
<td>0.31 0.12 0.11 0.07</td>
<td>0.27 0.12 0.11</td>
</tr>
<tr>
<td>Middle (M)</td>
<td>3.01 1.37 1.06 0.58</td>
<td>0.97 0.85 0.79</td>
</tr>
<tr>
<td>Upper (U)</td>
<td>6.30 2.51 2.52 1.27</td>
<td>1.00 1.00 0.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.07 0.53</td>
</tr>
</tbody>
</table>

## Table 2(b): Ownership of Individual Durable Goods by Class in the Urban Sub-sample, NSS 1999-00, N = 48,924 households

<table>
<thead>
<tr>
<th>Category (Class)</th>
<th>Recreational Goods</th>
<th>Household Goods</th>
<th>Transport Goods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Record Player</td>
<td>Electric Fan</td>
<td>Bicycle</td>
</tr>
<tr>
<td></td>
<td>Radio</td>
<td>Air Cond.</td>
<td>Motor Bike/ Scooter</td>
</tr>
<tr>
<td></td>
<td>TV</td>
<td>Washing Machine</td>
<td>Motor Car/ Jeep</td>
</tr>
<tr>
<td></td>
<td>VCR/ VCP Tape/ CD Player</td>
<td>Fridge</td>
<td></td>
</tr>
<tr>
<td>Lower (L)</td>
<td>0.00 0.07 0.04 0.00 0.01</td>
<td>0.11 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>Middle (M)</td>
<td>0.01 0.39 0.68 0.02 0.27</td>
<td>0.77 0.07 0.04 0.18</td>
<td></td>
</tr>
<tr>
<td>Upper (U)</td>
<td>0.05 0.58 0.97 0.19 0.71</td>
<td>0.97 0.41 0.39 0.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3: Household Characteristics, by Class, in the Urban Sub-sample, NSS, 55th Round (1999-00)

<table>
<thead>
<tr>
<th>Category (Class)</th>
<th>Per Capita Monthly Household Expenditure</th>
<th>Other Household Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std. Dev.</td>
</tr>
<tr>
<td>Lower (L)</td>
<td>791.26</td>
<td>859.109</td>
</tr>
<tr>
<td>Middle (M)</td>
<td>961.785</td>
<td>1772.39</td>
</tr>
<tr>
<td>Upper (U)</td>
<td>1469.57</td>
<td>1109.97</td>
</tr>
</tbody>
</table>

Addendum: Percentiles of Per Capita Monthly Expenditure in the Entire Sample, N = 48, 921

<table>
<thead>
<tr>
<th>Percentile</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>99</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>392</td>
<td>490</td>
<td>584</td>
<td>686</td>
<td>801</td>
<td>940</td>
<td>1120</td>
<td>1377</td>
<td>1815</td>
<td>3799.56</td>
</tr>
</tbody>
</table>
Fig. 1: EM-Estimated 'Density' Function of Y, by Class

- Probability
- Total No. of Goods Owned (Y)
- phi1 (Lower)
- phi2 (Upper)
- phi3 (Middle)
- Rel. Freq of Obs.
Fig. 2: Actual vs. EM-Predicted Distribution of $Y$

The graph compares the actual distribution of the total number of goods owned ($Y$) with the EM-predicted distribution. The x-axis represents the total number of goods owned, ranging from 0 to 14. The y-axis represents the probability, ranging from 0 to 0.18. The graph shows the relative frequency of observed values (dashed line) and the predicted values (solid line).
Fig. 3: EM-Estimated Probability of Belonging to Each Class

- Probability of Being Upper
- Probability of Being Middle
- Probability of Being Lower

Total Number of Goods Owned (Y)

Probability
Fig. 4(a): Ownership by Durable Categories by Class, Urban Sub-sample, NSS 1999-00

- Transport Goods
- Household Goods
- Recreational Goods
- All

Proportion of Households Who Own the Good

Upper (U) | Middle (M) | Lower (L)

Fig. 4(b): Ownership of Individual Goods by Class, Urban Sub-sample, NSS 1999-00

- Motor Car/ Jeep
- Motor Bike/ Scooter
- Bicycle
- Fridge
- Washing Machine
- Air Cond.
- Electric Fan
- Tape/ CD Player
- VCR/ VCP
- TV
- Radio
- Record Player

Proportion of Households Who Own the Good

Upper (U) | Middle (M) | Lower (L)
Fig. 5: Level of Education, by Class

- Not literate
- Lit, NFEC/AEC
- Lit, TLC
- Lit, others
- Lit, below primary
- Primary
- Middle
- Secondary
- Higher Secondary
- Grad. in agriculture
- Grad. in engineering
- Grad. in medicine
- Grad, in other

Percentage of Class-\(i\) Households in Category
\(i = \text{Lower, Middle, Upper}\)
Fig. 6: Type of Employment, by Class

- **Self-Employed**
- **Regular Wage/Salary Earner**
- **Casual Labour**
- **Self-Employed in Agriculture**
- **Others**

Percentage of Class-i Households in Category: (i = Lower, Middle, Upper)

Fig. 7: Land Ownership & Source of Income, by Class

- **Owens land**
- **Received income from cultivation**
- **Received income from fishing**
- **Received income from wage/salaried employment**
- **Received income from non-agricultural enterprises**
- **Received income from pension**
- **Received income from rent**
- **Received income from remittances**
- **Received income from interests and dividends**
- **Received income from other sources**

Percentage of Class-i Households saying 'Yes': (i = Lower, Middle, Upper)
Fig. 8: Primary Source of Energy Used for Cooking, by Class

Fig. 9: Primary Source of Energy Used for Lighting, by Class
Fig. 10: Religion, by Class

Fig. 11: Social Group, by Class
Table B: EM Results for a Two-Component Mixture Model

Two-Components Model: EM Estimates

<table>
<thead>
<tr>
<th>Class</th>
<th>Pop. Share</th>
<th>Prob. of Owning a Gd.</th>
<th>Mean No. of Gds.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower</td>
<td>0.43</td>
<td>0.09</td>
<td>1.08</td>
</tr>
<tr>
<td>Middle/Upper</td>
<td>0.57</td>
<td>0.38</td>
<td>4.52</td>
</tr>
</tbody>
</table>